
BULETINUL
Universităţii Petrol – Gaze din Ploieşti

Vol. LVIII
No. 1/2006 37 - 42 Seria

Matematică - Informatică - Fizică

Need for group transactions in
multimedia and design databases

Monica Vlădoiu, Cătălina Negoiţă

Universitatea Petrol-Gaze din Ploieşti, Bd. Bucureşti 39, Ploieşti, Catedra de Informatică
e-mail: mvladoiu@upg-ploiesti.ro

Abstract
Classical concurrency control assumes that transactions are short. This is far too radical for usually long
multimedia/design transactions (e.g the locking concurrency control has problems because a long
transaction can block the access of others to its locks during its execution time; in optimistic control
conflicts, they are detected only at the end, so rollback is unacceptable). An appropriate model for
design/multimedia process, as an ensemble of sub-tasks, seems to be the group transaction. This allows
the exchange of partial data and the restoration of not committed data by using as many intermediary
database levels as needed between the private and the public database.

Keywords: multimedia databases, concurrency control, group transaction

Issues with management of transactions in multimedia and design
databases

Databases, be them multimedia or not, are strongly shared resources that are concurrently
accessed both by numerous application programs and many end-users. This behavior implies the
need for a control component, which must control the access to the shared data,
in order to avoid the undesired interferences between the concurrent processes. The core
concept of this component is the transaction. Classical transactions lead to concurrency control
and to error recovery, which addresses the limitation of unpleasant effect of various errors.

Transaction management is mandatory as a result of the need for data sharing consistently and
concurrently. Consistency refers to respect the integrity constraints on the database. If
transactions are executed serially, the consistency is naturally enforced. Serializability is the
major criterion for the correctness of concurrent transactions' executions (i.e., transactions that
have overlapping execution time intervals, and possibly access same shared resources), and a
major goal for concurrency control. As such it is supported in all general-purpose database
systems.

The rationale behind it is the following: If each transaction is correct, then a serial execution of
these is correct. As a result, any execution that is equivalent (in its outcome) to such serial
execution is correct. A transaction schedule is serializable if it is equivalent (in its outcome, the
resulting database state) to a serial schedule (serial schedule: no overlap in two transactions'
execution time intervals is allowed, i. e. consecutive transaction execution is provided).

38 Monica Vlădoiu, Cătălina Negoiţă

The key transaction processing features of a Database Management System (DBMS) are the
ACID properties. Without them, the integrity of the database cannot be guaranteed. In practice,
these properties are often relaxed somewhat to provide better performance. An example of a
transaction is a transfer of funds from one account to another, even though it might consist of
multiple individual operations (such as debiting one account and crediting another). The ACID
properties guarantee that such transactions are processed reliably. The ACID features are:
o Atomicity refers to the ability of the DBMS to guarantee that either all of the tasks of a

transaction are performed or none of them are. The transfer of funds can be completed or it
can fail for a multitude of reasons, but atomicity guarantees that one account will not be
debited if the other is not credited as well;

o Consistency refers to the database being in a legal state when the transaction begins and
when it ends. This means that a transaction cannot break the rules, or integrity constraints,
of the database. If an integrity constraint states that all accounts must have a positive
balance, then any transaction violating this rule will be aborted (in a nutshell all transactions
must leave the database in a consistent state);

o Isolation refers to the ability of the application to make operations in a transaction appear
isolated from all other operations. This means that no operation outside the transaction can
ever see the data in an intermediate state; a bank manager can see the transferred funds on
one account or the other, but never on both—even if she ran her query while the transfer
was still being processed. More formally, isolation means the transaction history (or
schedule) is serializable. For performance reasons, this ability is the most often relaxed
constraint (transactions cannot interfere with each other);

o Durability refers to the guarantee that once the user has been notified of success, the
transaction will persist, and not be undone. This means it will survive system failure, and
that the database system has checked the integrity constraints and will not need to abort the
transaction. Typically, all transactions are written into a log that can be played back to
recreate the system to its state right before the failure. A transaction can only be deemed
committed after it is safely in the log (successful transactions must persist through crashes.).

Implementing ACID correctly is not simple. Processing a transaction often requires a number of
small changes to be made, including updating indices that are used by the system to speed up
searches. This sequence of operations is subject to failure for a number of reasons (e. g. the
system may have no room left on its disk drives, or it may have used up its allocated CPU time).

ACID suggests that the database be able to perform all of these operations at once. In fact this is
difficult to arrange. There are two popular families of techniques: Write ahead logging and
Shadow paging. In both cases, locks must be acquired on all information that is updated, and
depending on the implementation, on all data that is being read. In write ahead logging,
atomicity is guaranteed by ensuring that information about all changes is written to a log before
it is written to the database. That allows the database to return to a consistent state in the event
of a crash. In shadowing, updates are applied to a copy of the database, and the new copy is
activated when the transaction commits. The copy refers to unchanged parts of the old version
of the database, rather than being an entire duplicate.

Almost all databases used nothing but locking to ensure they were ACID until recently. This
means that a lock must be acquired anytime before processing data in a database, even on read
operations. Maintaining a large number of locks, however, results in substantial overhead as
well as hurting concurrency. If user A is running a transaction that has read a row of data that
user B wants to modify, for example, user B must wait until user A's transaction is finished.

An alternative to locking is to maintain separate copies of any data that is modified. This allows
users to read data without acquiring any locks. Going back to the example when user A's
transaction gets to data that user B has modified, the database is able to retrieve the exact
version of that data that existed when user A started their transaction. This ensures that user A
gets a consistent view of the database even if other users are changing data that user A needs to

 Need for group transactions in multimedia and design databases 39

read. It is difficult to guarantee ACID properties in a network environment. Network
connections might fail, or two users might want to use the same part of the database at the same
time. Two-phase commit is typically applied in distributed transactions to ensure that each
participant in the transaction agrees on whether the transaction should be committed or not.

Classical concurrency control involves short transactions (from milliseconds to seconds). This
assumption is reflected, for instance, by the atomicity condition that enforce the complete
rollback of a not committed transaction in case of an error occurrence. This requirement is far
too radical for design or multimedia transactions, that both are long transactions (spanning from
hours to days, or even weeks). Having said that, we can presume that design and multimedia
databases long transaction are needed. This presumption has the following consequences:

o complete rollback for these long transactions must be avoided by introducing intermediary
save points despite that the saved objects are not yet consistent;

o blocking long duration transactions have to be prevented to happen, so that the concurrency
will be stimulated;

o inconsistent information exchange between design/MMDB users should be allowed;
o simultaneous and concurrent designing is desired – those could be done by allowing

concurrent updates on the same object to take place, with special concern to insurance of
inconsistency detection;

o to offer means for reflecting the organizational structure of the design-multimedia process;
o transactions must provide support for checkIn/checkOut from a client-server architecture;
o the user has to be empowered with concurrency control.
Despite all the above relaxations of classical concurrency mechanisms, in many cases
serializability must be ensured all the same. Consequently, in those cases the new proposed
transaction model should expand the classical transaction paradigm instead of replacing it.

The proposed solution

A suitable model for the organization of a design or multimedia process as an ensemble of
sub-tasks is the group transaction. The premise for this is the assumption that each task is being
executed by a group of designers or developers working together. The main idea behind this
model consists in the introduction of an intermediary level between the public and private
databases that corresponds to the partial project databases (known as well as semi-public or
group databases). Within this organization the checkIn/checkOut operations can take place both
between public and group database and involving private and group databases (see Figure 1).

Fig 1. Group transaction model’s hierarchy

40 Monica Vlădoiu, Cătălina Negoiţă

This simple idea has led to a special transaction model, which accomplishes the requirement
that incomplete parts of the developed project should be visible to other group member, without
making them publicly available. Within this model there are two kinds of transactions: group,
respectively user transactions. Each group transaction is associated with a group of designers
who co-operate to develop a common task or project. When a group transaction is created, a
correspondent group database will be created as well. The group transaction can
checkIn/checkOut between the public database and its associated group database, as in the
classical case. For group transaction, serializability is easily ensured due to the close
collaboration between the members of each group.

For each group transaction, correspondent user transactions will be created as sub-transactions
of it. So the user transactions will depend totally on the transaction that has created them. A
private database will be started for each user transaction. CheckIn/checkOut operations between
group and user database can be done afterwards. The main restriction within this model is that
the user must not have direct access to the public database. Besides the checkIn/checkOut
operations, the group transaction model allows operations as creation and modification of new
group of users, starting and ending both group and user transactions. This model has only three
database levels and two transaction levels. A generalization of this model, which permits an
arbitrary number of imbrication levels, will allow nested transactions to take place. Finally, a
multimedia database transaction involves all its sub-systems - these are at least three:
hierarchical storage management, multimedia database system and information retrieval system.

Concurrency control

Concurrency control is a method used to ensure that database transactions are executed safely
(i.e., without data loss). Concurrency control is especially applicable to DBMSs, which must
ensure that transactions are executed safely and that they follow the ACID rules. The DBMS
must be able to ensure that only serializable, recoverable schedules are allowed, and that no
actions of committed transactions are lost while undoing aborted transactions. So, concurrency
control must synchronize the actions of transactions that take place simultaneously, by
preventing their interference. The best known concurrency control algorithms are: locking,
multi-versions and optimistic algorithms (time stamps sorting, committing time certification):

o locking is the most used synchronization mechanism. The basic idea is that any persistent
object has an associated lock. Before a transaction can access this object it has to request the
access to this lock. If another transaction has already got access to this lock or to a lock
which conflicts with the new request, then the current transaction has to wait till the lock is
unlocked (examples of such locks are exclusive or share). The lock can be achieved to
various database levels, from simple records to compound objects, or even to the whole
database. The locking algorithms are pessimistic, in the sense that they reject a lock access
request if there is only the possibility that something goes wrong;

o multi-versions offer the possibility to create a new version of a database object for each
update transaction. This mechanism of version control is used in synchronization insurance,
to improve the concurrency between the transactions that only “read” from the database and
the ones that only “write”. Two of the main requirements of the models of transactions that
apply to the design and multimedia environments refer to the support for a high degree of
concurrency and to the exchange of partial objects. The version management can be used to
increase the concurrency and to facilitate the exchange of project objects, which are
partially consistent, among the co-operating transactions. The configurations are object
collections that are treated both as locking and as versioning units. At their level the
consistency is to be ensured, regardless of the versions of the various components;

o optimistic algorithms allow all the transactions to start their execution before trying to
achieve their own changes in the database. Then a validation procedure is launched to verify

 Need for group transactions in multimedia and design databases 41

if conflicts have occurred - if a conflict is detected the transaction is rolled back. The
process that determines if a transaction can safely be committed is called certification.
Within this context a transaction is divided in three phases: reading, validation and writing.
Within the reading phase each object that is accessed by a transaction is copied in a separate
working space, which is owned by each transaction. All transaction updates will be
executed on these local copies. No locking of a transaction takes place. During the
transaction execution in this phase, the concurrency control collect certain operations that
will be later used in the validation phase to detect conflicts (such as the list of all objects
that are read by the transactions, respectively the list all objects that are written by the
transactions). After the reading phase when the transaction enters into the validation phase,
a time stamp will be attached to it. This stamp is an element of a monotone increasingly
sequence (as the time moment when the transactions ends the reading phase). During this
phase of a transaction T three criteria are evaluated for each transaction T’ whose time
stamp precedes T’s. If one of the criteria is accomplished, then serializability is guaranteed.
The three criteria are: (1) T’ has ended its writing phase before T has started its reading
phase, (2) the set of elements that T’ has written do not intersect with the set of elements
that T reads and T’ finishes its writing phase before T starts its writing phase, and (3) the set
of elements that T’ has written do not intersect with the set of elements that T reads and
with the set of elements that T writes. If any of the above conditions is accomplished for
each transaction T’ that precedes T, according to the time stamps, then T may enter its
writing phase. Otherwise T must be stopped and it should enter a rollback operation (which
is trivial as all the updates have been executed on local copies). During the writing phase,
all the objects that have been modified by the transaction are committed in the database.
This is the moment when all the updates that this transaction has done become visible to the
other transactions.

Error recovery

The condition of transaction atomicity implies that the multimedia DBMS must guarantee that
the partial results of the transactions that fail must not be propagated in the persistent database.
There are three types of errors that the recovery manager has to deal with: storage media,
system or transaction errors. Errors related to the storage medium are solved usually by data
replication, either in the database by mirroring, either in log databases. System errors, hardware
or software, lead only to the destruction of the data from the volatile memory, the one from the
secondary storage support remaining intact. A transaction can fail from various reasons: either it
is involved in a deadlock situation and it has been chosen to be rolled back, or there are
inconsistencies related to respecting the integrity constraints or the user aborts it.

Recovery error module restores the database in a consistent state if an error occurs by using a
backup copy of the whole database, which is consistent because during its construction no
update transaction has been allowed. This operation is time and material consuming, so it is not
done often - there is an up limit to the frequency to which the backup is efficient. However, just
doing backup copies is not enough because due to durability, the updates committed by the
committed transactions must not be lost. To avoid this, one should consider that between the
database states are only differences. The necessary information to error recovery is in the
before-image, here the after image and in the logical logs files, which memorize the committed
transactions that will be re-executed in case of an error occurrence.

Conclusions

Classical control of concurrency assumes that database transactions are short time operations.
This is reflected by the atomicity that enforces the rollback of an un-committed transaction, in

42 Monica Vlădoiu, Cătălina Negoiţă

case of an error. This request is far too radical for multimedia or design transactions, as such
operations can include the developer’s intellectual effort within hours, days or even weeks. If
one thinks of the optimistic control in which the conflicts where detected only at the end it
becomes obvious why such an approach is unrealistic for multimedia/design transactions. The
locking concurrency control can also have similar problems if we think that a long time
transaction can block the access of other transactions to the locks it holds during its execution
time. This is unacceptable. This reasoning is still true for the transaction of access and
processing of large multimedia data amounts (e. g. movies). An appropriate model for the
organization of a design or multimedia process as an ensemble of sub-tasks seems to be the
group transaction. This model allows the exchange of partial data and the restoration of not
committed data by using as many intermediary database levels as needed between the private
and the public database.

References
1 . A i z a w a K . , N a k a m u r a Y . - Advances in Multimedia Information Processing - PCM

2004: 5th Pacific Rim Conference on Multimedia, in Lecture Notes in Computer Science, Springer;
2005

2 . C a n d a n K . S . , C e l e n t a n o A . - Advances in Multimedia Information Systems: 11th
International Workshop MIS 2005, in Lecture Notes in Computer Science series, Springer 2005

3 . F u r h t B . - Multimedia Technologies and Applications for the 21st Century, Kluwer Academic
Publishers, 1998

4 . H i r z a l l a N . B . , K a r m o u c h A . - A multimedia query specification language, in Nwosu K.,
Thuraisingham B., Bruce Berra P., Multimedia Database Systems, Design and Implementation
Strategies, Kluwer Academic Publishers, 1996

5 . K h o s h a f i a n , S . - Multimedia and Imaging Databases, Morgan Kaufmann, 1995
6 . L e e K . , L e e Y . K . , B e r r a P . B . - Management of Multi-structured Hypermedia

Documents: A Data Model, Query Language, and Indexing Scheme, in Multimedia Database
Management System - Research, Issues and Future Directions, Kluwer Academic Publishers, 1997

7 . R o y o J . D . , H a s e g a w a G . - Management of Multimedia Networks and Services: 8th
International Conference on Management of Multimedia Networks and Services, MMNS 2005,
Barcelona, Lecture Notes in Computer Science Publisher: Springer; 2005

8 . S u b r a h m a n i a n V . S . - Principles of multimedia Database Systems, Morgan Kaufmann Pub.
Inc., San Francisco, CA, 1998

9 . Y u C . T . , M e n g W . - Principles of database query processing for advanced applications,
Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1998

1 0 . * * * Multimedia Computing and Networking 2004 - Proceedings of S P I E (International Society
for Optical Engine) California, 2004

Nevoia de tranzacţii de grup în bazele de date multimedia
şi de proiectare

Rezumat
Controlul clasic al concurenţei presupune că tranzacţiile au durată scurtă. Această cerinţă este mult prea
radicală în cazul tranzacţiilor multimedia sau de proiectare, de vreme ce o astfel de tranzacţie este de
durată (de exemplu în cazul bazat zăvorîrii pot apărea probleme pentru că o tranzacţie de lungă durată
poate bloca accesul altor tranzacţii la zăvoarele pe care ea le deţine, pînă cînd se va termina; în
controlul optimist conflictele sînt detectate abia la sfîrşit, deci rularea înapoi este inacceptabilă). Un
model potrivit pentru organizarea unui proces de proiectare sau a unuia multimedia ca un ansamblu de
sub-task-uri pare să fie modelul tranzacţiei de grup. Acesta permite schimbul de date parţiale şi
restaurarea datelor “ne-comise” în baza de date prin folosirea atîtor nivele intermediare de baze de date
câte sînt necesare între baza de date publică şi bazele de date private.

